Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Sci Rep ; 12(1): 18539, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329103

RESUMO

Biofilm formation by pathogenic bacteria is a major challenge in the food industry. Once a biofilm is established, such as on food processing equipment, it becomes more difficult to eradicate. Although physical and chemical treatments are often used to control biofilm formation, these treatments can have significant drawbacks. Alternative biofilm treatments are needed. Phage DW-EC was isolated from dawet, an Indonesian traditional Ready-To-Eat food, which has high specificity for Enterohaemorrhagic Escherichia coli (EHEC), Enteropathogenic E. coli (EPEC), and Enterotoxigenic E. coli (ETEC). Phage DW-EC produces several enzymes that can prevent the development of biofilm and biofilm eradication. Depolymerase enzymes break down the polysaccharides layer on the biofilms can lead to biofilm damage. On the other hand, endolysin and putative like-T4 lysozyme will lyse and kill a bacterial cell, thereby preventing biofilm growth. This research aims to determine the capability of previously identified phage DW-EC to inhibit and destroy biofilms produced by several foodborne pathogens. Phage DW-EC formed plaques on the bacterial lawns of EHEC, EPEC, and ETEC. The efficiency of plating (EOP) values for EHEC, EPEC, ETEC, and Bacillus cereus were 1.06, 0.78. 0.70, and 0.00, demonstrating that DW-EC was effective in controlling pathogenic E. coli populations. Furthermore, phage DW-EC showed anti-biofilm activity against foodborne pathogenic bacteria on polystyrene and stainless-steel substrates. DW-EC biofilm inhibition and destruction activities against pathogenic E. coli were significantly higher than against B. cereus biofilms, which was indicated by a lower density of the biofilm than B. cereus. Microscopic visualization verified that bacteriophage DW-EC effectively controlled EHEC, EPEC, and ETEC biofilms. The results showed that DW-EC could inhibit and destroy biofilm, making it promising to be used as an anti-biofilm candidate for polystyrene and stainless steel equipment in the food industry.


Assuntos
Bacteriófagos , Escherichia coli Êntero-Hemorrágica , Escherichia coli Enteropatogênica , Escherichia coli Enterotoxigênica , Poliestirenos , Biofilmes , Escherichia coli Enteropatogênica/fisiologia , Bactérias , Aço Inoxidável/farmacologia
2.
Food Microbiol ; 100: 103868, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34416967

RESUMO

Kimchi is one of the primary sources of high sodium content in the Korean diet. Low-sodium kimchi is commercially manufactured to minimize the health effects of high salt. We investigated the influence of lactic acid bacteria (LAB) as starter culture in combination with 1% or 2.5% salt on the survival of pathogenic Escherichia coli and physicochemical properties of kimchi during fermentation at 10 °C and 25 °C. Among ten strains of LAB isolated from kimchi, Leuconostoc mesenteroides (KCTC 13374) and Lactobacillus plantarum (KCTC 33133) exhibited antimicrobial activities against pathogenic E. coli (EPEC, ETEC, and E. coli O157:H7) and strong tolerance to low pH (2 and 3) and 0.3% bile salts. Thus, L. mesenteroides and L. plantarum were used as starter cultures for kimchi that contained 1% and 2.5% salt. All pathogenic E. coli strains survived in kimchi regardless of starter cultures or salt concentration for over 15 days at 10 °C, but they died off within 4 days at 25 °C. Survival of pathogenic E. coli was better in naturally fermented kimchi (titratable acidity:0.65%) than kimchi fermented with starter cultures (titratable acidity:1.0%). At 10 °C, the average delta value of E. coli O157:H7 (16.15 d) was smaller than those of EPEC (20.76 d) and ETEC (20.20 d) in naturally fermented kimchi. Overall, survival ability of E. coli O157:H7 was lower than EPEC and ETEC, although differences were not significant. Reduced salt concentration from 2.5% to 1% in kimchi did not affect the growth of LAB and the fermentation period. Pathogenic E. coli died at a faster rate in kimchi fermented with starter cultures and 1% salt than in naturally fermented kimchi with 2.5% salt.


Assuntos
Brassica/microbiologia , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Escherichia coli Enterotoxigênica/crescimento & desenvolvimento , Escherichia coli O157/crescimento & desenvolvimento , Alimentos Fermentados/microbiologia , Lactobacillales/metabolismo , Cloreto de Sódio/metabolismo , Antibiose , Brassica/química , Contagem de Colônia Microbiana , Escherichia coli Enteropatogênica/fisiologia , Escherichia coli Enterotoxigênica/fisiologia , Escherichia coli O157/fisiologia , Alimentos Fermentados/análise , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Cloreto de Sódio/análise
3.
Infect Immun ; 89(9): e0005921, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33820817

RESUMO

Diarrheal diseases are a leading cause of death in children under the age of 5 years worldwide. Repeated early-life exposures to diarrheal pathogens can result in comorbidities including stunted growth and cognitive deficits, suggesting an impairment in the microbiota-gut-brain (MGB) axis. Neonatal C57BL/6 mice were infected with enteropathogenic Escherichia coli (EPEC) (strain e2348/69; ΔescV [type III secretion system {T3SS} mutant]) or the vehicle (Luria-Bertani [LB] broth) via orogastric gavage at postnatal day 7 (P7). Behavior (novel-object recognition [NOR] task, light/dark [L/D] box, and open-field test [OFT]), intestinal physiology (Ussing chambers), and the gut microbiota (16S Illumina sequencing) were assessed in adulthood (6 to 8 weeks of age). Neonatal infection of mice with EPEC, but not the T3SS mutant, caused ileal inflammation in neonates and impaired recognition memory (NOR task) in adulthood. Cognitive impairments were coupled with increased neurogenesis (Ki67 and doublecortin immunostaining) and neuroinflammation (increased microglia activation [Iba1]) in adulthood. Intestinal pathophysiology in adult mice was characterized by increased secretory state (short-circuit current [Isc]) and permeability (conductance) (fluorescein isothiocyanate [FITC]-dextran flux) in the ileum and colon of neonatally EPEC-infected mice, along with increased expression of proinflammatory cytokines (Tnfα, Il12, and Il6) and pattern recognition receptors (Nod1/2 and Tlr2/4). Finally, neonatal EPEC infection caused significant dysbiosis of the gut microbiota, including decreased Firmicutes, in adulthood. Together, these findings demonstrate that infection in early life can significantly impair the MGB axis in adulthood.


Assuntos
Encéfalo/metabolismo , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Retroalimentação Fisiológica , Microbioma Gastrointestinal , Intestinos , Animais , Suscetibilidade a Doenças , Humanos
4.
Virulence ; 12(1): 902-917, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33729090

RESUMO

Many bacterial pathogens utilize a specialized secretion system, termed type III secretion system (T3SS), to translocate effector proteins into host cells and establish bacterial infection. The T3SS is anchored within the bacterial membranes and contains a long needle/filament that extends toward the host-cell and forms, at its distal end, a pore complex within the host membrane. The T3SS pore complex consists of two bacterial proteins, termed SctB and SctE, which have conflicting targeting indications; a signal sequence that targets to secretion to the extracellular environment via the T3SS, and transmembrane domains (TMDs) that target to membrane localization. In this study, we investigate whether the TMD sequences of SctB and SctE have special features that differentiate them from classical TMDs and allow them to escape bacterial membrane integration. For this purpose, we exchanged the SctB and SctE native TMDs for alternative hydrophobic sequences and found that the TMD sequences of SctB and SctE dictate membrane destination (bacterial versus host membrane). Moreover, we examined the role of the SctB TMD sequence in the activity of the full-length protein, post secretion, and found that the TMD does not serve only as a hydrophobic segment, but is also involved in the ability of the protein to translocate itself and other proteins into and across the host cell membrane.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/fisiologia , Interações entre Hospedeiro e Microrganismos , Sistemas de Secreção Tipo III/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Domínios Proteicos , Sistemas de Secreção Tipo III/genética
5.
J Microbiol Methods ; 184: 106201, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713725

RESUMO

Enteropathogenic E. coli (EPEC) causes intestinal infections leading to severe diarrhea. EPEC attaches to the host cell causing lesions to the intestinal epithelium coupled with the effacement of microvilli. In the process, actin accumulates into a pedestal-like structure under bacterial microcolonies. We designed an automated fluorescence microscopy-based screening method for discovering compounds capable of inhibiting EPEC adhesion and virulence using aurodox, a type three secretion system (T3SS) inhibitor, as a positive control. The screening assay employs an EPEC strain (2348/69) expressing a fluorescent protein and actin staining for monitoring the bacteria and their pedestals respectively, analyzing these with a custom image analysis pipeline. The assay allows for the discovery of compounds capable of preventing the formation of pathogenic actin rearrangements. These compounds may be interfering with virulence-related molecular pathways relevant for developing antivirulence leads.


Assuntos
Antibacterianos/farmacologia , Automação/métodos , Aderência Bacteriana/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/fisiologia , Microscopia de Fluorescência/métodos , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Humanos , Sistemas de Secreção Tipo III/antagonistas & inibidores , Sistemas de Secreção Tipo III/metabolismo , Virulência/efeitos dos fármacos
6.
J Nat Prod ; 83(12): 3614-3622, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33270444

RESUMO

Lythrum salicaria herb (LSH) was applied in diarrhea therapy since ancient times. Despite empirically referenced therapeutic effects, the bioactivity mechanisms and chemical constituents responsible for pharmacological activity remain not fully resolved. Taking into consideration the historical use of LSH in treatment of diarrhea in humans and farm animals, the aim of the study was to examine in vitro the influence of LSH and its C-glycosylic ellagitannins on processes associated with maintaining intestinal epithelium integrity and enteropathogenic Escherichia coli (EPEC) growth and adhesion. LSH was not only inhibiting EPEC growth in a concentration dependent manner but also its adhesion to IPEC-J2 intestinal epithelial cell monolayers. Inhibitory activity toward EPEC growth was additionally confirmed ex vivo in distal colon samples of postweaning piglets. LSH and its dominating C-glycosylic ellagitannins, castalagin (1), vescalagin (2), and salicarinins A (3) and B (4) were stimulating IPEC-J2 monolayer formation by enhancing claudin 4 production. Parallelly tested gut microbiota metabolites of LSH ellagitannins, urolithin C (5), urolithin A (6), and its glucuronides (7) were inactive. The activities of LSH and the isolated ellagitannins support its purported antidiarrheal properties and indicate potential mechanisms responsible for its beneficial influence on the intestinal epithelium.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Escherichia coli Enteropatogênica/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Lythrum/química , Linhagem Celular , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/fisiologia , Células Epiteliais/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos
7.
mBio ; 11(6)2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144373

RESUMO

Enteropathogenic Escherichia coli (EPEC) is an extracellular pathogen that tightly adheres to host cells by forming "actin pedestals" beneath the bacteria, a critical step in pathogenesis. EPEC injects effector proteins that manipulate host cell signaling cascades to trigger pedestal assembly. We have recently shown that one such effector, EspG, hijacks p21-activated kinase (PAK) and sustains its activated state to drive the cytoskeletal changes necessary for attachment of the pathogen to target cells. This EspG subversion of PAK required active Rho family small GTPases in the host cell. Here we show that EPEC itself promotes the activation of Rho GTPases by recruiting Frabin, a host guanine nucleotide exchange factor (GEF) for the Rho GTPase Cdc42. Cells devoid of Frabin showed significantly lower EPEC-induced PAK activation, pedestal formation, and bacterial attachment. Frabin recruitment to sites of EPEC attachment was driven by EspG and required localized enrichment of phosphatidylinositol 4,5-bisphosphate (PIP2) and host Arf6. Our findings identify Frabin as a key target for EPEC to ensure the activation status of cellular GTPases required for actin pedestal formation.IMPORTANCE Enteropathogenic Escherichia coli (EPEC) is a leading cause of diarrhea in children, especially in the developing world. EPEC initiates infection by attaching to cells in the host intestine, triggering the formation of actin-rich "pedestal" structures directly beneath the adherent pathogen. These bacteria inject their own receptor into host cells, which upon binding to a protein on the pathogen surface triggers pedestal formation. Multiple other proteins are also delivered into the cells of the host intestine, which work together to hijack host signaling pathways to drive pedestal production. Here we show how EPEC hijacks a host protein, Frabin, which creates the conditions in the cell necessary for the pathogen to manipulate a specific pathway that promotes pedestal formation. This provides new insights into this essential early stage in disease caused by EPEC.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Proteínas dos Microfilamentos/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
8.
Mol Biol Rep ; 47(10): 7567-7573, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32981012

RESUMO

Enteropathogenic Escherichia coli (EPEC) is a bioagent that causes diarrhea through the formation of biofilm. The recalcitrant of EPEC to the current conventional antibiotic treatment has grown a big concern in a way to find effective alternative inhibitors. Aptamers have been demonstrated to show the ability to kill the pathogenic bacteria through inhibition of biofilm formation. Therefore, this study aimed to investigate antibiofilm activities of six types of aptamers against EPEC K1.1 which was isolated from patients with diarrhea. Environmental conditions such as temperatures and pH which impacted on biofilm formation of EPEC K1.1 and also biofilm inhibition of aptamer on EPEC K1.1 were performed by counting the crystal violet formation in 96-well polystyrene microplates at OD570. The motility examination combined with qPCR were applied to prove the mechanism of aptamers inhibition on biofilm by targeting essential genes that involve biofilm formation. The result showed that by applying cut off value at 0.399, aptamer SELEX 10 Colony 5 exhibited the highest biofilm inhibition against EPEC K1.1 with an absorbance value of 0.126. Further analysis showed that this aptamer also was able to reduce the motility diameter of EPEC K1.1. The effect of this aptamer on EPEC K1.1 motility was confirmed by qPCR where the mRNA level of motB, csgA and lsrA gene reduced significantly compared to the untreated group. Aptamer SELEX 10 Colony 5 was able to inhibit biofilm formation through interfering the motility ability of EPEC K1.1 and also by reducing the mRNA level of biofilm formation-related genes. This study provides evidences that aptamer is effective and promising for both antibiofilm of EPEC K1.1 and alternative treatment of diarrhea.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Biofilmes/efeitos dos fármacos , Escherichia coli Enteropatogênica/fisiologia , Biofilmes/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Humanos
9.
Res Vet Sci ; 132: 150-155, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32585472

RESUMO

Multiple antibiotic-resistant extra-intestinal pathogenic Escherichia coli (ExPEC) strains represent a serious health care problem both for poultry and humans. Recently isolates with combined resistance to both antibiotics and heavy metals have been increased worldwide, with growing concern for possible co-selection of antimicrobial resistant genes. In the present study we characterized, at a phenotypic and genetic level, 80 E. coli isolates: forty independent isolates were collected from manure samples of healthy chickens and 40 from independent human extra-intestinal infections (ExPEC strains). The results obtained indicated that i) compared to chicken, human isolates presented a broader spectrum of antibiotic resistance and virulence potentials; ii) although at a lower extent, ExPEC-associated virulence genes were also present in chicken isolates, suggesting they may be potentially pathogens; iii) that arsenic (As) and zinc (Zn) tolerance genetic determinants were significantly more prevalent among chicken and human isolates respectively, while those responsible for tolerance to cadmium (Cd), silver (Ag) and copper (Cu) were equally distributed among the two groups of strains; iv) a very strong correlation was found between chicken gentamicin (GM) resistance and cadmium (Cd) tolerance. Elucidating the role of heavy metals in the selection and spread of highly pathogenic E. coli strains (co-selection) is of primary importance to lower the potential risk of infections in poultry and humans. The control of bacterial zoonotic agents, that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations, could be of relevant interest.


Assuntos
Galinhas , Farmacorresistência Bacteriana/genética , Escherichia coli Enteropatogênica/fisiologia , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Doenças das Aves Domésticas/microbiologia , Animais , Antibacterianos/farmacologia , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Marcadores Genéticos , Humanos , Metais Pesados/farmacologia , Filogenia , Doenças das Aves Domésticas/genética , Virulência
10.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947656

RESUMO

Enteropathogenic Escherichia coli (EPEC) uses a type three secretion system to inject effector proteins into host intestinal epithelial cells, causing diarrhea. EPEC induces the formation of pedestals underlying attached bacteria, disrupts tight junction (TJ) structure and function, and alters apico-basal polarity by redistributing the polarity proteins Crb3 and Pals1, although the mechanisms are unknown. Here we investigate the temporal relationship of PAR polarity complex and TJ disruption following EPEC infection. EPEC recruits active aPKCζ, a PAR polarity protein, to actin within pedestals and at the plasma membrane prior to disrupting TJ. The EPEC effector EspF binds the endocytic protein sorting nexin 9 (SNX9). This interaction impacts actin pedestal organization, recruitment of active aPKCζ to actin at cell-cell borders, endocytosis of JAM-A S285 and occludin, and TJ barrier function. Collectively, data presented herein support the hypothesis that EPEC-induced perturbation of TJ is a downstream effect of disruption of the PAR complex and that EspF binding to SNX9 contributes to this phenotype. aPKCζ phosphorylates polarity and TJ proteins and participates in actin dynamics. Therefore, the early recruitment of aPKCζ to EPEC pedestals and increased interaction with actin at the membrane may destabilize polarity complexes ultimately resulting in perturbation of TJ.


Assuntos
Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Proteína Quinase C/metabolismo , Junções Íntimas/metabolismo , Animais , Biomarcadores , Comunicação Celular , Polaridade Celular , Modelos Animais de Doenças , Infecções por Escherichia coli/patologia , Imunofluorescência , Humanos , Mucosa Intestinal/patologia , Camundongos , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Nexinas de Classificação/química , Nexinas de Classificação/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-31501197

RESUMO

Innate immune sensors can recognize when host cells are irrevocably compromised by pathogens, and in response can trigger programmed cell death (pyroptosis, apoptosis, and necroptosis). Innate sensors can directly bind microbial ligands; for example, NAIP/NLRC4 detects flagellin/rod/needle, whereas caspase-11 detects lipopolysaccharide. Other sensors are guards that monitor normal function of cellular proteins; for instance, pyrin monitors Rho GTPases, whereas caspase-8 and receptor-interacting protein kinase (RIPK)3 guards RIPK1 transcriptional signaling. Some proteins that need to be guarded can be duplicated as decoy domains, as seen in the integrated decoy domains within NLRP1 that watch for microbial attack. Here, we discuss the evolutionary battle between pathogens and host innate immune sensors/guards, illustrated by the Red Queen hypothesis. We discuss in depth four pathogens, and how they either fail in this evolutionary race (Chromobacterium violaceum, Burkholderia thailandensis), or how the evolutionary race generates increasingly complex virulence factors and host innate immune signaling pathways (Yersinia species, and enteropathogenic Escherichia coli [EPEC]).


Assuntos
Apoptose , Evolução Biológica , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Fatores de Virulência/genética , Imunidade Adaptativa , Animais , Escherichia coli Enteropatogênica/fisiologia , Humanos , Fatores de Virulência/imunologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-31681620

RESUMO

Pet and EspC are toxins secreted by enteroaggregative (EAEC) and enteropathogenic (EPEC) diarrheagenic Escherichia coli pathotypes, respectively. Both toxins are members of the Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) family. Pet and EspC are important virulence factors that produce cytotoxic and enterotoxic effects on enterocytes. Here, we evaluated the effect of curcumin, a polyphenolic compound obtained from the rhizomes of Curcuma longa L. (Zingiberaceae) on the secretion and cytotoxic effects of Pet and EspC proteins. We found that curcumin prevents Pet and EspC secretion without affecting bacterial growth or the expression of pet and espC. Our results show that curcumin affects the release of these SPATEs from the translocation domain, thereby affecting the pathogenesis of EAEC and EPEC. Curcumin-treated EAEC and EPEC did not induce significant cell damage like the ability to disrupt the actin cytoskeleton, without affecting their characteristic adherence patterns on epithelial cells. A molecular model of docking predicted that curcumin interacts with the determinant residues Asp1018-Asp1019 and Asp1029-Asp1030 of the translocation domain required for the release of Pet and EspC, respectively. Consequently, curcumin blocks Pet and EspC cytotoxicity on epithelial cells by preventing their release from the outer membrane.


Assuntos
Membrana Externa Bacteriana/metabolismo , Toxinas Bacterianas/metabolismo , Curcumina/farmacologia , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/fisiologia , Enterotoxinas/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Serina Endopeptidases/metabolismo , Toxinas Bacterianas/química , Sítios de Ligação , Curcumina/química , Citoesqueleto/metabolismo , Enterotoxinas/química , Proteínas de Escherichia coli/química , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Proteólise , Serina Endopeptidases/química , Relação Estrutura-Atividade
13.
Microbiologyopen ; 8(12): e931, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568664

RESUMO

Enteropathogenic Escherichia coli (EPEC) infection causes a histopathological lesion including recruitment of F-actin beneath the attached bacteria and formation of actin-rich pedestal-like structures. Another important target of EPEC is the tight junction (TJ), and EspF induces displacement of TJ proteins and increased intestinal permeability. Previously, we determined that an EPEC strain lacking EspF did not cause TJ disruption; meanwhile, pedestals were located on the TJ and smaller than those induced by the wild-type strain. Therefore, EspF could be playing an important role in both phenotypes. Here, using different cell models, we found that EspF was essential for pedestal maturation through ZO-1 disassembly from TJ, leading to (a) ZO-1 recruitment to the pedestal structure; no other main TJ proteins were required. Recruited ZO-1 allowed the afadin recruitment. (b) Afadin recruitment caused an afadin-ZO-1 transient interaction, like during TJ formation. (c) Afadin and ZO-1 were segregated to the tip and the stem of pedestal, respectively, causing pedestal maturation. Initiation of these three discrete phases for pedestal maturation functionally and physically required EspF expression. Pedestal maturation process could help coordinate the epithelial actomyosin function by maintaining the actin-rich column composing the pedestal structure and could be important in the dynamics of the pedestal movement on epithelial cells.


Assuntos
Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/genética , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Actinas/metabolismo , Células Epiteliais/metabolismo , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/metabolismo , Imunofluorescência , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Permeabilidade , Fosfoproteínas/metabolismo , Ligação Proteica
14.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527129

RESUMO

Epidemiological studies suggest frequent association of enteropathogenic bacteria with Entamoeba histolytica during symptomatic infection. In this study, we sought to determine if the interaction with enteropathogenic (EPEC) or nonpathogenic Escherichia coli (strain DH5α) could modify the virulence of E. histolytica to cause disease in animal models of amebiasis. In vitro studies showed a 2-fold increase in CaCo2 monolayer destruction when E. histolytica interacted with EPEC but not with E. coli DH5α for 2.5 h. This was associated with increased E. histolytica proteolytic activity as revealed by zymogram analysis and degradation of the E. histolytica CP-A1/5 (EhCP-A1/5) peptide substrate Z-Arg-Arg-pNC and EhCP4 substrate Z-Val-Val-Arg-AMC. Additionally, E. histolytica-EPEC interaction increased EhCP-A1, -A2, -A4, and -A5, Hgl, Apa, and Cox-1 mRNA expression. Despite the marked upregulation of E. histolytica virulence factors, nonsignificant macroscopic differences in amebic liver abscess development were observed at early stages in hamsters inoculated with either E. histolytica-EPEC or E. histolytica-E. coli DH5α. Histopathology of livers of E. histolytica-EPEC-inoculated animals revealed foci of acute inflammation 3 h postinoculation that progressively increased, producing large inflammatory reactions, ischemia, and necrosis with high expression of il-1ß, ifn-γ, and tnf-α proinflammatory cytokine genes compared with that in livers of E. histolytica-E. coli DH5α-inoculated animals. In closed colonic loops from mice, intense inflammation was observed with E. histolytica-EPEC manifested by downregulation of Math1 mRNA with a corresponding increase in the expression of Muc2 mucin and proinflammatory cytokine genes il-6, il-12, and mcp-1 These results demonstrate that E. histolytica/EPEC interaction enhanced the expression and production of key molecules associated with E. histolytica virulence, critical in pathogenesis and progression of disease.


Assuntos
Entamoeba histolytica/patogenicidade , Entamebíase/patologia , Escherichia coli Enteropatogênica/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Animais , Células CACO-2 , Linhagem Celular , Cricetinae , Cisteína Proteases/metabolismo , Citocinas/metabolismo , Entamoeba histolytica/microbiologia , Células HT29 , Humanos , Inflamação , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Mucina-2/metabolismo , Fatores de Virulência/biossíntese
15.
mBio ; 10(5)2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530678

RESUMO

The transition from a planktonic lifestyle to a host-attached state is often critical for bacterial virulence. Upon attachment to host cells, enteropathogenic Escherichia coli (EPEC) employs a type III secretion system (T3SS) to inject into the host cells ∼20 effector proteins, including Tir. CesT, which is encoded from the same operon downstream of tir, is a Tir-bound chaperone that facilitates Tir translocation. Upon Tir translocation, the liberated CesT remains in the bacterial cytoplasm and antagonizes the posttranscriptional regulator CsrA, thus eliciting global regulation in the infecting pathogen. Importantly, tight control of the Tir/CesT ratio is vital, since an uncontrolled surge in free CesT levels may repress CsrA in an untimely manner, thus abrogating colonization. We investigated how fluctuations in Tir translation affect the regulation of this ratio. By creating mutations that cause the premature termination of Tir translation, we revealed that the untranslated tir mRNA becomes highly unstable, resulting in a rapid drop in cesT mRNA levels and, thus, CesT levels. This mechanism couples Tir and CesT levels to ensure a stable Tir/CesT ratio. Our results expose an additional level of regulation that enhances the efficacy of the initial interaction of EPEC with the host cell, providing a better understanding of the bacterial switch from the planktonic to the cell-adherent lifestyle.IMPORTANCE Host colonization by extracellular pathogens often entails the transition from a planktonic lifestyle to a host-attached state. Enteropathogenic E. coli (EPEC), a Gram-negative pathogen, attaches to the intestinal epithelium of the host and employs a type III secretion system (T3SS) to inject effector proteins into the cytoplasm of infected cells. The most abundant effector protein injected is Tir, whose translocation is dependent on the Tir-bound chaperon CesT. Upon Tir injection, the liberated CesT binds to and inhibits the posttranscriptional regulator CsrA, resulting in reprogramming of gene expression in the host-attached bacteria. Thus, adaptation to the host-attached state involves dynamic remodeling of EPEC gene expression, which is mediated by the relative levels of Tir and CesT. Fluctuating from the optimal Tir/CesT ratio results in a decrease in EPEC virulence. Here we elucidate a posttranscriptional circuit that prevents sharp variations from this ratio, thus improving host colonization.


Assuntos
Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/fisiologia , Proteínas de Escherichia coli/genética , Interações Hospedeiro-Patógeno , Sistemas de Secreção Tipo III/genética , Adaptação Fisiológica , Adesinas Bacterianas , Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Chaperonas Moleculares/genética , Mutação , Proteínas de Ligação a RNA/genética , Receptores de Superfície Celular/genética , Proteínas Repressoras/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência
16.
Rev. argent. microbiol ; 51(3): 208-213, set. 2019. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1041826

RESUMO

La capacidad de formar biopelículas de los microorganismos patógenos en gran variedad de ambientes, superficies y condiciones trae consigo un importante riesgo, tanto para la industria alimentaria como para la salud pública. Este trabajo tuvo como objetivo evaluar y comparar los efectos de la metodología empleada y de los medios de cultivo utilizados, sobre la capacidad de una cepa de Escherichia coli verotoxigénica no O157 y una enteropatogénica de formar biopelículas sobre una superficie de poliestireno. Se ensayaron 2 variantes metodológicas en cultivo estático y se utilizaron medios de cultivo con diferente composición. Los resultados mostraron que ambas cepas formaron una mayor cantidad de biopelícula en cultivo en LB suplementado con glucosa, con recambio del medio a las 24 h y la cuantificación de la biopelícula realizada a las 48 h de incubación. Dichas condiciones podrían ser utilizadas en futuros estudios sobre formación de biopelícula.


The ability to form biofilms of pathogenic microorganisms in a wide variety of environments, surfaces and conditions constitute an important risk, both for the food industry and for public health. The aim of this work was to evaluate and to compare the effects of the methodology applied and the culture medium used on the ability of a non-O157 verotoxigenic Escherichia coli strain and an enteropathogenic strain to form biofilm on polystyrene surface. Two methodological variants were tested in static culture and culture mediums with different composition were used. The results showed that both strains were able to form a greater biofilm under culture in LB supplemented with glucose, with medium replacement at 24 h and the quantification of the biofilm carried out at 48 h of incubation. These conditions could be used in future studies on biofilm formation.


Assuntos
Biofilmes/efeitos dos fármacos , Meios de Cultura/farmacologia , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Poliestirenos , Especificidade da Espécie , Técnicas Bacteriológicas , Biofilmes/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/fisiologia , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli Shiga Toxigênica/fisiologia , Escherichia coli Shiga Toxigênica/patogenicidade , Glucose/farmacologia
17.
BMC Res Notes ; 12(1): 297, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138269

RESUMO

OBJECTIVES: This study aimed to estimate diarrheagenic Escherichia coli (DEC) prevalence among pediatric patients with diarrhea at the Costa Rican National Children's Hospital-Social Security Service (Hospital Nacional de Niños-Caja Costarricense del Seguro Social; HNN-CCSS). DEC variations with respect to rainfall, presence of coinfections, and DEC antimicrobial resistance were also investigated. RESULTS: A retrospective observational study from January 2008 to December 2016 was conducted. A total of 12 247 gastroenteritis records were analyzed. Annual DEC prevalence ranged from 2.7% (2008) to 9.0% (2013). The most prevalent pathotypes were enteroaggregative E. coli (EAEC) [n = 189 (31%)], enteropathogenic E. coli (EPEC) [n = 145 (24%)] and enteroinvasive E. coli (EIEC) [n = 91 (15%)]. A reduction in the probability of EAEC gastroenteritis was detected as rainfall rose above 200 mm/mo. [(Generalized Additive Model (GAM), p = 0.04)]. Coinfections were observed mainly between EPEC and Campylobacter spp. (10%). Antimicrobial resistance occurred in 0.6%, 29%, and 42% of DEC for ciprofloxacin, trimethoprim/sulfamethoxazole, and ampicillin, respectively.


Assuntos
Diarreia/epidemiologia , Diarreia/imunologia , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Antibacterianos/farmacologia , Coinfecção/microbiologia , Costa Rica , Humanos , Testes de Sensibilidade Microbiana , Prevalência , Chuva , Estudos Retrospectivos
18.
EBioMedicine ; 43: 325-332, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31036531

RESUMO

BACKGROUND: The predominance of specific bacteria such as adherent-invasive Escherichia coli (AIEC) within the Crohn's disease (CD) intestine remains poorly understood with little evidence uncovered to support a selective pressure underlying their presence. Intestinal ethanolamine is however readily accessible during periods of intestinal inflammation, and enables pathogens to outcompete the host microbiota under such circumstances. METHODS: Quantitative RT-PCR (qRT-PCR) to determine expression of genes central to ethanolamine metabolism; transmission electron microscopy to detect presence of bacterial microcompartments (MCPs); in vitro infections of both murine and human macrophage cell lines examining intracellular replication of the AIEC-type strain LF82 and clinical E. coli isolates in the presence of ethanolamine; determination of E. coli ethanolamine utilization (eut) operon transcription in faecal samples from healthy patients, patients with active CD and the same patients in remission following treatment. RESULTS: Growth on the intestinal short chain fatty acid propionic acid (PA) stimulates significantly increased transcription of the eut operon (fold change relative to glucose: >16.9; p-value <.01). Additionally ethanolamine was accessible to intra-macrophage AIEC and stimulated significant increases in growth intracellularly when it was added extracellularly at concentrations comparable to those in the human intestine. Finally, qRT-PCR indicated that expression of the E. coli eut operon was increased in children with active CD compared to healthy controls (fold change increase: >4.72; P < .02). After clinical remission post-exclusive enteral nutrition treatment, the same CD patients exhibited significantly reduced eut expression (Pre vs Post fold change decrease: >15.64; P < .01). INTERPRETATION: Our data indicates a role for ethanolamine metabolism in selecting for AIEC that are consistently overrepresented in the CD intestine. The increased E. coli metabolism of ethanolamine seen in the intestine during active CD, and its decrease during remission, indicates ethanolamine use may be a key factor in shaping the intestinal microbiome in CD patients, particularly during times of inflammation. FUND: This work was funded by Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/K008005/1 & BB/P003281/1 to DMW; by a Tenovus Scotland grant to MJO; by Glasgow Children's Hospital Charity, Nestle Health Sciences, Engineering and Physical Sciences Research Council (EPSRC) and Catherine McEwan Foundation grants awarded to KG; and by a Natural Environment Research Council (NERC) fellowship (NE/L011956/1) to UZI. The IBD team at the Royal Hospital for Children, Glasgow are supported by the Catherine McEwan Foundation and Yorkhill IBD fund. RKR and RH are supported by NHS Research Scotland Senior fellowship awards.


Assuntos
Doença de Crohn/complicações , Doença de Crohn/metabolismo , Escherichia coli Enteropatogênica , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/microbiologia , Etanolamina/metabolismo , Animais , Linhagem Celular , Doença de Crohn/genética , Doença de Crohn/patologia , Escherichia coli Enteropatogênica/fisiologia , Escherichia coli Enteropatogênica/ultraestrutura , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/patologia , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Óperon
19.
J Med Microbiol ; 68(6): 940-951, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31107199

RESUMO

PURPOSE: This study aimed to characterize 82 atypical enteropathogenic Escherichia coli (aEPEC) isolates, obtained from patients with diarrhea in Brazil, regarding their adherence patterns on HeLa cells and attaching and effacing (AE) lesion pathways. METHODOLOGY: The adherence and fluorescence-actin staining (FAS) assays were performed using HeLa cells. AE lesion pathways were determined through the detection of tyrosine residue 474 (Y474) phosphorylation in the Tir protein, after its translocation to host cells, and by PCR assays for tir genotyping and detection of Tir-cytoskeleton coupling protein (tccP) genes. RESULTS: Regarding the adherence pattern, determined in the presence of d-mannose, 12 isolates (14.6 %) showed the localized adherence (LA)-like pattern, 3 (3.7  %) the aggregative adherence pattern and 4 (4.9  %) a hybrid LA/diffuse adherence pattern. In addition, 36 (43.9  %) isolates displayed an undefined adherence, and 26 (31.7  %) were non-adherent (NA), while one (1.2 %) caused cell detachment. Among the 26 NA aEPEC isolates, 11 showed a type 1 pilus-dependent adherence in assays performed without d-mannose, while 15 remained NA. Forty-eight (58.5 %) aEPEC were able to trigger F-actin accumulation underneath adherent bacteria (FAS-positive), which is an important feature of AE lesions. The majority (58.3 %) of these used the Tir-Nck pathway, while 39.6  % may use both Tir-Nck and Tir-TccP pathways to induce AE lesions. CONCLUSION: Our results reveal the diversity of strategies used by aEPEC isolates to interact with and damage epithelial host cells, thereby causing diarrheal diseases.


Assuntos
Aderência Bacteriana , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Actinas/metabolismo , Diarreia/microbiologia , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Genótipo , Células HeLa , Humanos , Fenótipo , Fosforilação , Receptores de Superfície Celular/metabolismo
20.
Sci Rep ; 9(1): 4122, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858454

RESUMO

Diarrhoea is the second leading cause of death in children under the age of five. The bacterial species, Vibrio cholerae and enteropathogenic Escherichia coli (EPEC), are among the main pathogens that cause diarrhoeal diseases, which are associated with high mortality rates. These two pathogens have a common infection site-the small intestine. While it is known that both pathogens utilize quorum sensing (QS) to determine their population size, it is not yet clear whether potential bacterial competitors can also use this information. In this study, we examined the ability of EPEC to determine V. cholerae population sizes and to modulate its own virulence mechanisms accordingly. We found that EPEC virulence is enhanced in response to elevated concentrations of cholera autoinducer-1 (CAI-1), even though neither a CAI-1 synthase nor CAI-1 receptors have been reported in E. coli. This CAI-1 sensing and virulence upregulation response may facilitate the ability of EPEC to coordinate successful colonization of a host co-infected with V. cholerae. To the best of our knowledge, this is the first observed example of 'eavesdropping' between two bacterial pathogens that is based on interspecies sensing of a QS molecule.


Assuntos
Escherichia coli Enteropatogênica/fisiologia , Cetonas/metabolismo , Percepção de Quorum , Vibrio cholerae/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...